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Problems associated with the formulation of the boundary conditions for diffusion equations describ-
ing flow-through chemical-engineering systems from the point of view of stochastic process theory
are discussed. An approach to modelling such systems is presented, allowing the one-dimensional
diffusion (dispersion) model of a continuous flow mixer, commonly used in chemical engineering, to
be reassessed from a rather general point of view.

In our previous papers1 – 3 we discussed some problems related to two ways of formu-
lating the diffusion equation: the conventional approach and the so called probabilistic
approach. The possibility of modelling diffusion processes by means of adequate sto-
chastic differential equations2,3 has also been mentioned. Major attention has been paid
to stochastic diffusion processes occurring in the three-dimensional unbounded Eucli-
dean space. However, an actual chemical-engineering equipment must be looked upon
as a bounded part of this space only, defined by its boundaries, which are of various
kinds (e.g. permeable, reflecting, and absorbing boundaries). Each kind of system
boundary requires a specific mathematical formulation of the boundary condition.
Nevertheless, there are some differences between the probabilistic and classical ap-
proaches which are in a sense similar to problems encountered when the diffusion
equation itself is to be formulated.

An exhaustive analysis of the boundary conditions of diffusion equations has been
performed by Feller4,5 and Bharucha-Reid6, who divided the boundaries into several
groups, including processes with discontinuous trajectories. This approach has also
been applied to multidimensional problems; for instance, a very simple classification of
the diffusion processes and their boundary conditions can be obtained by using the so
called characteristic operator, defined and introduced by Dynkin7.
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Gardiner8, who applied this classification to processes dealt with by natural sciences,
pointed out that only two kinds of boundaries are actually of importance: the reflecting
boundary and the absorbing boundary; a combination of these two boundaries, the so
called elastic boundary, is occasionally used as well. Somewhat different boundary
conditions are used in literature dealing with partial differential equations9:

a) Boundary conditions of the first kind (Dirichlet’s boundary conditions), prescrib-
ing value of PDE solution at the boundaries, e.g. temperature or concentration of
species on the surface of the spatial region.

b) Boundary conditions of the second kind (Neumann’s boundary conditions), pre-
scribing the flux of the quantity under consideration through the surface, e.g. heat or
mass flux.

c) Boundary conditions of the third kind (Newton’s boundary conditions), which are
linear combinations of the conditions of the first and second kinds.

Application of such general mathematical theories to the solution of some chemical-
engineering problems, where significant simplifications are commonly adopted, is often
associated with serious difficulties. The so called Danckwert’s boundary conditions10

for flow-through mixers and reactors are a typical example. A mixer is considered a
one-dimensional system, with a step change in the diffusion coefficient occurring at the
two boundaries. This model has been subject to extensive discussion, and reviews on
this topic can be found in some chemical engineering monographs11,12.

Let us consider a flow-through “closed–closed” system (cf. e.g., ref.12) depicted in
Fig. 1, through which an incompressible liquid flows and carries a detectable and react-
ing component A. Suppose that the concentration field of component A inside the sys-
tem can be described, with a sufficient accuracy, by the equation

∂ρA

∂t
  +  v 

∂ρA

∂x
  −  D 

∂2ρA

∂x2   +  r(ρA)   =   0 ,          0  ≤  x  ≤  L , (1)

FIG. 1
An one-dimensional flow-through system
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where v is the velocity of the liquid, D is the diffusion coefficient of component A and
r is the reaction rate. This equation implies that changes in the component concentra-
tion ρA are only significant in the direction of the x-axis and in time (ρA = ρA(x,t)). The
quantities v and D are supposed to be constant.

Now, it is necessary to specify the initial condition, i.e. the initial distribution of
concentration along the reactor:

lim
t → 0

 ρA(x,t)   =   ρA0(x) . (2)

Furthermore, two boundary conditions are necessary, because Eq. (2) is second order
with respect to x. These conditions can have the form

lim
x → 0−

 v ρA(x,t)   =   lim
x → 0+

  



 v ρA(x,t)  −  D 

∂ρA(x,t)
∂x

 




(3)

lim
x → L

 
∂ρA(x,t)

∂x
   =   0 . (4)

Danckwerts10 formulated these boundary conditions for the steady state and for a first
order chemical reaction. Actually, this formulation was used earlier by Langmuir (cf.
e.g.11). The boundary conditions (3) and (4) imply the occurrence of plug flow in both
the inlet and outlet connecting pipes; hence, the following relation holds true:

D   =   0 ,          x  <  0   ∪    x  >  L . (5)

Equations (3) and (4) have been proved to apply to the unsteady state13,14 and nonli-
near reaction kinetics15 as well. Another system of boundary conditions preserving the
continuity of concentrations and fluxes of components at the boundaries have also been
suggested16. It should be noted that for the reactor design, the two conditions are re-
quired at the reactor inlet only.

It must be emphasized that the discontinuity of the diffusion coefficient at the ends
of the reactor brings about discontinuity of the solution of the diffusion equation. Fur-
thermore, the boundary condition at the reactor outlet is corrupted in the important case
of plug flow inside the reactor, or in the case of a real short reactor and a nonzero D
value.
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It is noteworthy that stochastic process theory can deal with problems involving dif-
fusion coefficients which are discontinuous in space (see, e.g., ref.17). A method solv-
ing this kind of problem by means of an adequately defined integral operator has been
suggested18,19, this method, however, is only suitable for addressing linear problems.
Attempts have been made to use diffusion coefficients which are also continuous at the
reactor boundaries20 – 22.

Dilman and Kronberg23 – 25 derived a model which partly eliminates the basic short-
comings of the diffusion model: they introduced a concept of process relaxation time,
within which the flux of the detectable component can be defined as another inde-
pendent variable in addition to the concentration, and, in some cases, the diffusion
coefficient can be neglected altogether. This model allows both the concentration and
the flux of the component at the inlet of the reactor to be prescribed.

The following text proposes a three-dimensional diffusion model of a flow mixer and
gives a formulation of the corresponding stochastic differential equation (SDE). This
model allows the problems of formulation of boundary conditions for flow mixers and
chemical reactors to be discussed from a rather general point of view. The applicability
of this approach to stochastic modelling of continuous mixers and chemical reactors is
also discussed.

THEORETICAL

Consider a bounded region of space ΩR completely filled with a flowing liquid. The
region is confined by surface S in which there are two openings: the liquid can only
flow in through the one and out through the other (Fig. 2). The openings are connected
to pipes which have impermeable walls and connect the region ΩR to the environment.
Molecules of the diffusing, and in the chemical reactor also reacting, component A
move together with the liquid through the spatial region considered (this component A
serves as a tracer, which can be detected, e.g. by its colour or electrical conductivity).

FIG. 2
Bounded region of space ΩR with imper-
meable surface Su = S − Si − Se
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Denote the area of the inlet opening as Si and the area of the outlet opening as Se. The
surface Su = S − Si − Se is impermeable both for the liquid and for the diffusing mole-
cules.

Obviously, it is feasible to consider the boundary conditions for both the carrier
liquid and the diffusing component over the impermeable surface only. Inside the pipes
connecting the liquid region ΩR to the environment, the motion of both the liquid and
component A has to be described by equations of motion (momentum balances). How-
ever, the description of the flow pattern is usually replaced by adequate boundary con-
ditions at the two openings.

The spatial and time distribution of component A is described by means of the mass
balance

∂ρA

∂t
  +  ∇  . (v ρA)  −  ∇  . (D . ∇  ρA)   =   0 . (6)

It has been demonstrated previously1 that Eq. (6) is also applicable to the spatial dis-
tribution of component A in the case of a turbulent flow, where the concentration ρA

and the velocity of the flowing liquid v must be time-averaged. The quantity D then
represents the sum of the turbulent and molecular diffusivities: this can be expressed as

D   =   DT  +  D I , (7)

where DT is the turbulent diffusivity, D is the molecular diffusivity regarded as a scalar
constant, and I is the identity tensor. The diffusivity D is, in general, a symmetric tensor
of the second order; its matrix is positively definite. The diffusivities D, DT and D are,
in general, functions of time t and of the spatial position, expressed by means of the
position vector x. The vector

q(x,t)   =   v ρA  −  D . ∇  ρA (8)

is the flux intensity of component A at time t and position x. The heat transfer equa-
tion1 can be written analogously, the liquid temperature being the unknown function
and D being the thermal diffusivity tensor. The initial condition for Eq. (6) is given by
the initial distribution of component A within the region ΩR, i.e.

lim
t → 0

 ρA(x,t)   =   ρA0(x) ,          x  ∈   ΩR . (9)
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Before formulating the boundary conditions we will introduce symbols for the position
vectors assigned to points on the surface S of the considered region ΩR (see Fig. 1):

rj   =   x  ∈   Sj ,          j  =  {i, e, u} .

Furthermore, we denote a scalar product of any vector b and the unit vector as bn:

bn   =   b . n ,          n  =  n(r) ,

The following boundary condition then applies to the impermeable part Su of the total
surface of the region ΩR:

lim
xn → rn

 qn(xn,t)   =   0 . (10)

We will consider the flux of component A inside the inflow and outflow openings as
a continuous function of the spatial coordinate, i.e.

lim
xn → rj,n−

 qn(xn,t)   =   lim
xn → rj,n+

 qn(xn,t) ,          j  =  {i, e} . (11)

Now, we adopt some assumptions concerning the flow pattern inside the equipment
modelled:

A1) The concentration of component A is sufficiently low for the flow pattern to be
unaffected by its presence.

A2) The flow of the liquid is quasistationary.
A3) The structure of the diffusion tensor in a proximity to the impermeable wall is

such that the direction of one of its eigenvectors is identical with that of the surface
normal at the given point on the wall (surface Su).

The first two assumptions have obvious physical interpretation. Assumption A2) fur-
ther demands that the velocity v and diffusivity D are functions of the position in space
only, not of time. Assumption A3) expresses the fact that near the surface, the diffusion
in the direction perpendicular to the surface differs significantly from that in the tan-
gential direction. The diffusion fluxes in these two directions are the prevailing ones. It
can be proved that for a symmetrical second order tensor T there exists a vector r such
that r . T = λr, where λ is an eigenvalue of T (see, e.g., ref.26). Assumption A3) can be
thus formulated as
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     lim
x → r

 n(r) . D(x) . ∇  ρA(x,t)   =   lim
x → r

 n(r) . D(x) ∇  ρA(x,t)   =

=   lim
x → r

 D(xn)∇ n ρA(xn,t) ,          r  ∈   Su , (12)

where D(x) denotes an eigenvalue of D in the limiting case where x approaches a point
r located on the impermeable surface, r ∈  Su. This eigenvalue can be, naturally, a
function of the spatial coordinate. The symbol ∇ n ρA = ∂ρA

 ⁄ ∂n denotes the concentra-
tion gradient of component A in the direction of the external normal at the given posi-
tion of the space. An analogous relation holds for the points located within the inlet and
outlet opening areas. The direction of the first eigenvector is parallel to the axes of the
pipes. The other two are directed towards the walls of the pipes attached to the open-
ings (inside the pipes with circular cross-sections, however, the directions of the eigen-
vectors are ambiguous). Combining Eqs (8) and (10) and including assumptions A1)
through A3) we obtain

lim
xn → rn

 vn ρA(xn,t)  −  D(xn)∇ n ρA(xn,t)   =   0 ,          rn  ∈   Su . (13)

Due to the impermeability of the surface Su, the normal component of the fluid velocity
v must also converge to zero (by virtue of assumption A1)):

lim
xn → rn

 
∂ρA(xn,t)

∂n
   =   0 ,          rn  ∈   Su . (14)

In the case of a semipermeable wall, i.e. a wall permeable for molecules of component
A only, this equation must be replaced with a more complex equation (boundary condi-
tion of the third kind), viz.

∂ρA(xn,t)
∂n

   =   C1 ρA  +  C2 ,          xn  →  rn  ∈   Su , (15)

in which the coefficients C1 and C2 are, in general, functions of rn. Equation (15) is also
applicable if temperature is considered instead of the concentration of component A
and the wall is assumed to be imperfectly heat insulated.
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In analogy with Eq. (11) it follows that both the concentration of component A and
its gradient are continuous functions of the spatial coordinate at the inlet and outlet
openings, assuming that the coefficients v and D are continuous there as well:

lim
xn → rj,n−

 ρA(xn,t)   =   lim
xn → rj,n+

 ρA(xn,t) ,

lim
xn → rj,n−

  
∂ρA(xn,t)

∂n
   =   lim

xn → rj,n+
  
∂ρA(xn,t)

∂n
 , (16)

rj,n  ∈   Sj ,          j  =  {i, e} .

Thus, both the concentration of component A and its derivative can be regarded as the
boundary conditions along with Eq. (14). If the quantities v and D in Eq. (6) are also
defined inside the pipes, the boundary conditions (16) can be omitted. From the point
of view of physical feasibility it is evident that only the boundary condition for the inlet
opening must be specified.

Now we will compare the above relations with those provided by stochastic process
theory. It is well known that the probability density function1 characterizing the random
motion of a single particle (e.g. molecule) of component A can also be obtained by
solving Eq. (6). Random motion of the particle can be described in an adequate way by
means of the stochastic differential equation2,8

dX(t)   =   v [X(t)]dt  +  √2G [X(t)] . dW(t) , (17)

where X(t) denotes the position vector of the particle trajectory and the random func-
tion W(t) is a Wiener process (see, e.g., ref.8). The properties of W(t) have been defined
previously2 in a way which is well suited to treating the problem in question. The
tensor G (so called stochastic tensor) obeys the following relation3:

D(x)   =   2G(x) . G+(x) , (18)

where the matrix of tensor G+ is the transpose of the matrix of tensor G. The velocity
of the fluid particle, defined conventionally as
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V(t)   =   
dX(t)

dt
 , (19)

cannot be computed using Eq. (17) because the time derivative of the Wiener process
exceeds all limits at each time instant (see, e.g., ref.7); the particle velocity then would
approach infinity at each time instant, which is in contradiction to physical reality. This
fact, as is well known, is the principal shortcoming of any diffusion model, responsible
for the imperfection of modelling real diffusional processes, especially at the initial
stage.

Other problems arise from this fact also if the particle is required to leave the region
ΩR once it has reached the outlet opening. In a proximity to this opening, Eq. (17) can
be modified, after multiplication by the unit vector of the external normal, whose direc-
tion is parallel to the outlet pipe axis

dXn(t)   =   [vn (Xn(t))]dt  +  [2 D (Xn(t))]1 ⁄ 2dWn(t) , (20)

Xn  →  re,n  ∈   Se ,

where D denotes an eigenvalue of the tensor defined by Eq. (12). The random ordinates
of the Wiener process possess a Gaussian distribution with the mean value equal to
zero. The particle thus can return into the region ΩR via the outlet opening (in the
“upstream” direction) irrespective of the magnitude of the fluid velocity (which is, of
course, bounded). To account for the fact that, with a probability equal to one, the
particle after the first contact with the exit opening will never return into the region in
question, the concept of the absorbing barrier has been introduced in stochastic process
theory. The following relation holds5 for the absorbing barrier near the outlet opening:

lim
xn → rn

 D(xn) exp






 −∫ 
x ∈  Se

  
vn(xn)
D(xn)

 dxn







 p(xn,t)   =   0 , (21)

where p(x,t) is the probability density function for the particle position at time t.
Equation (21) is met if either the diffusivity D(x) at the outlet opening is zero, or the
probability density p(xn,t) is zero. However, in an actual system these conditions may
not be fulfilled, in which case the boundary condition (21) is inapplicable.

Now it must be pointed out that in general, continuous flow-through systems are
beyond the scope of treatment by stochastic process theory. The problems which this
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theory deals with are, in the physical sense, associated with random motion of a particle
from the interior of the region to its boundaries (see, e.g., ref.7 – the first passage time
problem). This is related with the fact that the probability density function, which is the
solution of the diffusion equation, is normalized: the integral of this function cannot be
greater than one. This condition may not be met by flow-through systems, where the
concentration of the component can increase. Therefore, the boundary condition of the
first kind is (even in the case of a batch system) replaced by the absorbing barrier; it is
assumed that the probability density function at the boundary of the system can take
one value only, viz. zero. The boundary condition of the second kind, however, is
identical with the reflecting boundary.

DISCUSSION

The above considerations demonstrate that the conventional as well as the stochastic
(probabilistic) approach to the modelling of flow systems is associated with serious
problems from the theoretical point of view, arising from the fact that the boundary
conditions inside the inlet and outlet openings, assuming discontinuity of the diffusion
coefficient, imply discontinuity of the solution of the diffusion equation.

In our opinion, the above difficulties encountered when modelling flow systems ba-
sically do not originate from deficiencies in the formulation of the boundary conditions;
actually, as mentioned at the beginning of the discussion, they stem from the very
principles of the diffusion model itself, which permits unlimited values of the diffusing
particle velocity and particle motion in both directions (in the one-dimensional model).

We suggest that the principal drawbacks of the diffusion model can be eliminated,
within the framework of the probabilistic treatment of flow systems, by using an equa-
tion generating bounded velocity values rather than by using the kinematic equation
(20). This approach is used in physics (e.g. ref.8) because it allows the forces acting
upon particles to be described explicitly. Such models can be referred to as dynamic
models. A model of this kind has been derived2 for the three-dimensional Euclidean
space; it is considerably more complex than the kinematic model. Furthermore, it is
noteworthy that by using suitably chosen terms in the diffusion equation (including the
particle velocity), random motion of the diffusing particles in one direction only can
also be described. This approach has been discussed27 and it has been demonstrated that
the steady-state velocity distribution obeys the gamma distribution with the reciprocal
argument

fv(v)   =   
(a ⁄ v)b + 1

a Γ(b)   exp(−a ⁄ v) , (22)
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where Γ(b) is the gamma function and a and b are constants. The function fv(v) is the
steady-state solution of the diffusion (Kolmogorov) equation

∂fv

∂t
  +  

∂
∂v

 [(α − βv)fv]  −  
∂2

∂v2 (γv2fv)   =   0 , (23)

a  =  α ⁄ γ ,     b  =  β ⁄ γ + 1 .

In our forthcoming paper28 this approach using Eqs (22) and (23) will be discussed in
more detail.

Finally, it should be noted that the Danckwert’s model can be interpreted making use
of Rippin’s29 concept of recirculating flow inside the mixer or reactor (Fig. 2). Assum-
ing that the cross-sections of the connecting pipes are smaller than the cross-section of
the reactor, the velocity of the liquid motion within the inlet pipe differs from that in
the reactor. The boundary condition (3) then can only be adopted supposing that at the
reactor axis the fluid moves from the left to the right at a velocity which is roughly
equal to the velocity inside the pipes. In the remaining space of the reactor the fluid
circulates, the mean axial velocity of the fluid being zero there. The circulating fluid
also carries an amount of the diffusing component A through the cross-section of the
reactor. This concept enables an interpretation of the step change in concentration at the
reactor inlet: The average concentration of the component at the beginning of the reac-
tor is lower than that within the inlet pipe because this component is consumed by a
chemical reaction.

The boundary condition (4) describes the reverberation of molecules of component A
on the impermeable wall at the reactor outlet. If the size of this wall is substantially
greater than the cross-section of the outlet opening, then the mean value of the concen-
tration gradient approaches zero, although the gradient inside the pipe itself is nonzero.
The boundary condition (4) may not be satisfied if Eq. (1) describes the heat transfer
inside the reactor and temperature is inserted instead of the function ρA(x,t). If the
thermal insulation of the end wall of the reactor is imperfect, the boundary condition
(4) must be replaced by the boundary condition of the third kind – Eq. (15), hence, the
gradient at the outlet will be different from zero.

The above reasoning suggests that if the principally less correct diffusion model (1)
is adopted, the boundary conditions (3) and (4) can provide a more realistic description
of actual reactors than the adoption of the more correct conditions of continuity of the
functions and their gradients at the reactor inlet. This approach is consistent with the
conclusions of Deckwer and Mahlman30, who noticed that eddy diffusion inside a reac-
tor does not cause backward fluctuations of the particle motion.
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CONCLUSIONS

The following steps were made in the treatment:
1. The general diffusion equation in three spatial dimensions (Eq. (6)) along with the

boundary conditions (Eqs. (10) and (11)) was formulated so as to enable the component
mass or heat transport inside a flow system to be described.

2. These equations were compared to the analogous Kolmogorov (Fokker–Planck)
diffusion equation for the probability density and to the boundary conditions conven-
tionally used in stochastic process theory (Eq. (21)). It was concluded that the prob-
abilistic form of the diffusion equation is only suitable for a class of problems which is
narrower than the class of problems that can be solved by using the conventional diffu-
sion equation.

3. The approach described in this paper allows the model of one-dimensional flow
reactor to be treated from a rather general point of view, and the Danckwert’s boundary
conditions10 to be interpreted in a more appropriate way.

4. It is suggested that the above deficiencies of the diffusion model can be eliminated
by using the so-called dynamic model which takes into account the velocities of the
moving molecules.

SYMBOLS

a constant in Eq. (22), m s−1

b constant in Eq. (22)
b arbitrary vector
C1 constant in Eq. (15), m−1

C2 constant in Eq. (15), kg m−4

D diffusion tensor, m2 s−1

D diffusivity, m2 s−1

fv probability density function for particle velocity, m−1 s
G stochastic tensor, m s−1/2

L reactor or mixer lenght, m
n unit vector of external normal at a point of surface S
p probability density for particle position, m−3

q intensity of flux of component A, kg m−2 s−1

r position vector of points forming surface S, m
r reaction rate, kg m−3 s−1

S boundary (surface) of region ΩR, m2

t time, s
V stochastic velocity of particle, m s−1

v velocity of fluid, m s−1

W three dimensional Wiener process, s1/2

X position vector of particle position, m
x spatial coordinate, m
α constant in Eq. (23) characterizing the active force, m s−2

β constant in Eq. (23) characterizing the force of laminar friction, s−1
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γ constant in Eq. (23) characterizing the force of turbulent friction, s−1

ρA concentration of component A, kg m−3

ΩR region (volume) of space, m3

Subscripts

e related to outlet opening
i related to inlet opening
n related to external normal direction
0 related to initial condition
T related to turbulent flow
u related to impermeable part of surface
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